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Atomic Vibrations in the Thermodynamic Limit

Z. Suchanecki1,2

Received April 12, 1999

We present, on a simple model of a one-dimensional crystal lattice, the
consequences of the assumption that the phases in the action±angle representation
are random. We prove that this assumption amounts to the introduction of a
stochastic measure which can be interpreted as a Gaussian noise. The presence
of noise gives rise to a new spectral representation of states of the lattice. It is
shown that this new spectral representation of states can also be extended on an
infinite lattice through a rigorously defined transition to the thermodynamic limit.
The traditional spectral representation, as a superposition of independent modes,
of such states as atomic displacements leads to meaningless expressions in the
thermodynamic limit. One of the main results is that under the random phase
assumption the interactions lead to the appearance of equilibrium states. We
obtain an explicit spectral representation of such states. This specific model
illustrates how probabilistic behavior of an infinite system can be derived from
classical laws of dynamics.

1. INTRODUCTION

Small perturbations may influence a classical or quantum dynamical

system in such a way that it will approach statistical equilibrium. This can
happen when the system is ª large,º which means that it has many, in fact

infinite, degrees of freedom. In such a case even a relatively small perturbation

which mixes the many degrees of freedom may give rise to irreversible

behavior. In consequence the traditional description of dynamics in terms of

trajectories which obey the Newtonian laws becomes meaningless. What can

be done instead is to replace the time evolution of points by the evolution
of probability densities or transition probabilities. Accordingly, the classical

evolution equation can be replaced by an appropriate equation characterizing
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the irreversible evolution of densities, like the master equation. Nevertheless

the natural question arises of how and under what conditions one can derive

the probabilistic description from deterministic laws of dynamics. Confining
ourself to Hamiltonian systems, we may ask: How does it happen that a

system of N interacting particles which is reversible for finite N becomes

irreversible when N 5 ` ? Another question is: Is it possible to obtain spectral

representations of equilibrium states in the case N 5 ` in a similar way as

can be done for finite N and, if so, what is the relation between them?

A first step toward resolution of these problems was taken by Pauli [1],
who showed how in a quantum mechanical Hamiltonian system, H 5 H0 1
l V, the approach to equilibrium can be produced by a relatively small perturba-

tion V. Assuming that the free Hamiltonian H0 has continuous spectrum and

that the phases of the quantum mechanical amplitudes with respect to the

eigenstates of H0 are random, he derived the master equation from the SchroÈ d-

inger equation. Pauli’ s approach was modified by van Hove [2], who derived
the master equation under a weaker condition and introduced states (operators)

with diagonal singularity which give meaning to equilibrium states.

Another approach to the problem of incorporating irreversibility on the

fundamental level in large systems was proposed by Petrosky and Prigogine

[3]. They proposed a new unified formulation of dynamics and thermodynam-
ics through extended spectral representations.

States with diagonal singularity admit spectral representations in terms

of the same spectral variables as other states of the Hamiltonian system. Thus

the two classes of states, so different from the point of view of their behavior,

can be connected. The difference is that the states with diagonal singularity

are meaningless in the conventional Hilbert space formulation. Nevertheless
they are derived, exploiting Hilbert space techniques, from finite systems

(spectra) through a specific transition to the thermodynamic limit.

There are some problems with such a transition. It is not clear how the

convergence of ordinary states to a state with diagonal singularity can be

defined. Moreover, the natural representations of states, such as displacements

of a particle, derived for systems with discrete spectra may become meaning-
less in the limit (see Section 2). The transition from discrete to continuous

spectrum is, on the other hand, necessary since only in the limit do the master

equation and the equilibrium states containing singularities of d -function type

acquire meaning.

A way round the difficulties associated with this transition to the thermo-

dynamic limit has been proposed in refs. 4 and 5. It has been shown there
that constructing a natural extension of quantum theory, it is possible to

give rigorous meaning to such states as the microcanonical equilibrium.

Nevertheless the related problem of transition from reversible finite system

to irreversible infinite one has not been touched.
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Looking for the origin of these difficulties, let us notice that equilibrium

states correspond to probabilistic distributions on an infinite system. Such

distributions can be derived as limits of probability distributions on finite
systems. Therefore, trying to resolve the problem of the transition from a

deterministic finite system to an infinite probabilistic one it is necessary to

recognize where the randomness enters the classical Newtonian laws. It turns

out that the only necessary probabilistic assumption is that proposed by Pauli.

We apply this idea to a simple model of a one-dimensional crystal lattice.

We assume that the phases in action±angle representation of a crystal lattice
are random and show that this assumption leads to a rigorous formulation

of the thermodynamic limit and representations of states of the system in

this limit. The stochasticity introduced by the random phases becomes a

Gaussian noise in the thermodynamic limit. States, such as displacements of

particles, become now stochastic processes represented by stochastic inte-

grals. In addition, there appear diagonal singularities of states, corresponding
to interactions. We also give a rigorous meaning to the statement that in the

thermodynamic limit the Kronecker delta becomes Dirac’ s delta.

The assumption of stochasticity which we impose has been suggested

by Petrosky and Prigogine [6]. It is similar to Pauli’ s random phase condition

as modified by van Hove. Randomness is therefore introduced on the funda-
mental level. In a free system randomness of phases does not give any

significant irreversible effects, although this assumption allows one to repre-

sent such states as atomic displacements in the thermodynamic limit. More-

over, the original representation can be recovered by taking the average.

However, small but persistent interactions between these stochastic variables

cause the creation of new statesÐ states with diagonal singularities. In conse-
quence our approach also allows us to derive extended spectral representa-

tions [3±5].

The additional advantage of such a description is that performing the

transition N ® ` , we need not switch from trajectories to densities. We can

stay on the level of trajectories, although now a trajectory becomes a realiza-

tion of a stochastic process. This makes the transition from reversibility to
irreversibility more transparent. We can also observe where we have to depart

from the traditional Hilbert space description. The states which correspond

to a free system can be regarded as elements of a Hilbert space even in

the new stochastic representation. Only the interactions create a new class

of states.

2. RANDOM PHASES AND REPRESENTATION OF STATES

We consider a one-dimensional crystal lattice with an infinite number

of atoms of mass m 5 1 free to move along the line. The infinite lattice will
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be treated as the limit of linear chains of N atoms when N ® ` . Let us

denote by un 5 un (t) the displacement of the nth atom from its equilibrium

position. We assume that the distance between any two neighboring atoms
in the equilibrium position is a. Under this assumption the potential energy

U is of the form

U 5
1

2 o
n,n8

An,n8unun8 1 U0 (1)

where U0 is the potential in equilibrium. Consequently the quation of motion is

d 2un

dt2 5 2 o
n8

Ann8un8 (2)

where the coefficients Ann8 depend only on n 2 n8, Ann8 5 A(n 2 n8), and

satisfy ( n8A(n 2 n8) 5 0. The requirements concerning the coefficients Ann8

are valid for N atoms under the cyclic condition on the displacement un 1 N 5
un. Under these conditions the general solution of Eq. (2) is [7]

un 5 o
k

qke
ikna (3)

where k is a multiple of 2 p /aN, 2 p /a , k # p /a, and qk 5 qk(t) are such

that q 2 k 5 q*k and satisfy the equation

d 2qk

dt2 1 v 2
kqk 5 0

and v k is the frequency associated with k,

v 2
k 5 o

l
A(l)eikla

Following the traditional approach [8], we express the displacements un

in the action±angle variables (Jk , a k) as the real part of

uÄ n 5
1

N 1/2 o
k

eikna 1 Jk

v k 2
1/2

ei a k (4)

(we omitted here the factor ! 2). We would like to discuss first the behavior

of un 5 RuÄ n in the thermodynamic limit when the number of atoms N and

the volume L in which they are enclosed tends to infinity while the ratio

N/L remains finite. We shall identify N with L. Therefore we are interested

in the study of the limit of (4) as N ® ` in the case when the values Jk and
v k are reasonably chosen, for example if the ratio Jk / v k is bounded on

( 2 p /a, p /a].

It is obvious that, unless Jk [ 0, the sum in (4) is of order N and the

limit does not exist. This may lead to the conclusion that in the thermodynamic
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limit the displacements are meaningless, or at least cannot be represented in

terms of action±angle variables. The first possibility must, of course, be

excluded since we know that nothing dramatic happens to displacements
when the number N of atoms in the lattice increases. Still the second possibility

makes the difference between the case of finite and infinite number of particles

enormous. This may cast some doubt on the validity of other reasoning based

on the thermodynamic limit arguments.

It was noted by Petrosky and Prigogine [6] that in order to obtain a finite

limit one should assume that angle variables a k must behave as ª stochastic
variables.º We shall give a rigorous meaning to a modification of this idea

and show that the limit of (4) can be represented as a stochastic integral.

The assumption of stochasticity of a k is similar to the Pauli’ s assumption

of random phases at all times [1], discussed also by van Hove [2]. He argued

that although the assumption of random phases of the quantum mechanical

amplitudes is necessary to derive Pauli’ s master equation, the original Pauli
random phase assumption can only hold at all times if the system is in

equilibrium. He proposed instead the assumption of random phases only for

the initial state of the system.

We face here a similar situation. We may assume that a k are random

variables. However, since a k 5 v kt 1 d k , as follows from the equations of
motion, we may assume that only the phases d k 5 a k(0) are random and

consider instead of (4) the sums

uÄ n 5
1

N 1/2 o
k

ei(kna 1 v kt) 1 Jk

v k 2
1/2

ei d k (5)

The possibility of the assumption that a k are random variables will be dis-

cussed later.

Actually, the problem of representation of states in the thermodynamic

limit concerns not only displacements. Any complex state sn 5 sn(t) of a

one-dimensional lattice which satisfies the cyclic condition sn 5 sn 1 N can
always be represented as a superposition of independent modes. We can

therefore use the same arguments as in the case of displacements. In particular

the stochastic representation of such states can be written as

sn 5
1

N 1/2 o
k

ei(kna 1 v kt)cke
i d k (58)

The problem under consideration can be reduced, for a fixed time t, as

follows. Consider only even numbers N, since in such a case we have, for

each N, the division of the interval ( 2 p /a, p /a] on N disjoint subintervals

D k of equal length, and denote by fN the step function which equals
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ei(kna 1 v kt)(Jk / v k)
1/2 [respectively ei(kna 1 v kt)ck, if we consider a general state (58)]

on the interval D k. We ask about the convergence, as N ® ` , of the sums

1

! N o
k

fN(k)ei u k (6)

where u k ( u k depend also on N ) are independent, identically distributed random
variables. If a priori there is no preference concerning phases, we may

assume that the random variables u k are uniformly distributed in the interval

[ 2 p , p ]. Putting

MN( D k) 5
1

! N
ei u k

we define a stochastic measure on the (finite) s -algebra generated by intervals

D k. Recall that the term stochastic measure means that to each measurable

set is assigned a random variable. By the assumption of independence of u k

each measure MN is independently scattered on the s -algebra generated by

the intervals D k , i.e., for any two sets A1, A2 such that A1 ù A2 5 0¤ the

random variables MN(A1) and MN(A2) are independent. In this terminology

the expression (6) can be interpreted as the stochastic integral

#
p /a

2 p /a

fN(k)MN(dk) (7)

Thus our original problem of the existence of the limit (6) has been
reduced to the problem of the existence of the limit (7) and, of course, the

meaning of the convergence itself. We shall show that this limit is also of

the the form of a stochastic integral with respect to some stochastic measure

M defined on the s -algebra of Borel subsets of ( 2 p /a, p /a].

In order to determine the measure M, which must also be some limit

of MN , let us consider an interval D from the dyadic division of the interval
( 2 p /a, p /a], i.e., for some N 5 2m. Thus MN ( D ) is correctly defined for

each N 5 2m 1 1, l 5 0, 1, 2, . . . , and we have

MN( D ) 5 MN( D 1) 1 . . . 1 MN( D 2l)

where D 1, . . . , D 2l is the dyadic division of D on 2l parts.
Let us consider the real part of MN( D ),

RMN( D ) 5 2 2 (m 1 l)/2 cos u 1 1 . . . 1 2 2 (m 1 l)/2 cos u 2l

and put

j lj 5 2 2 (m 1 1)/2 cos u j , j 5 1, . . . , 2l

For each l the random variables j lj are independent and identically distributed

with the mean value
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E j lj 5 2 2 (m 1 l)/2 1

2 p #
p

2 p

cos x dx 5 0

and the variance

Var j lj 5 s 2
lj 5 2 2 m 2 l 1

2 p #
p

2 p

cos2 x dx 5 2 2 m 2 l 2 1

Therefore max1 # j # 2l s lj ® 0 as l ® ` , and ( 2l

j 5 1 s 2
lj 5 2

2 m 2 1. In consequence

the array

{ j lj}l 5 1,2,...
j 5 1,...,21

satisfies the assumptions of the central limit theorem [9], which says that
there exists a limit of the distributions of j l1 1 . . . 1 j l2n as l ® ` . Since the

random variables cos u j are also bounded, it is easy to check that the array

{ j lj}l 5 1,2,...
j 5 1,...,21

satisfies the normal convergence criterion [9, Sec. 22]. Consequently the

distributions of RMN( D ) converge to the normal distribution 1(0, ) D ) ) with

the mean zero and the variance ) D ) . We obtain the same result for the imaginary
part of MN( D ).

Using the same arguments, we can show, under reasonable assumptions

on the values Jk / v k , the convergence of (6) in the sense of distributions as

N ® ` .

Let us note that the limit of the distributions of the real and complex

parts of MN( D ) will be either Gaussian or zero independently of the choice
of random phases u k , provided the Gaussian central limit theorem is satisfied.

We can choose u j being arbitrary independent with respect to j identically

distributed random variables such that Eei u j 5 0. The best choice, therefore,

is to consider the Gaussian stochastic measure from the beginning, as it gives

the same type of distributions of MN ( D ) for both finite N as well as in the

limit N ® ` , and it will allow us to obtain a much stronger, mean square
convergence, which in turn will allow ª interactionsº to be tackled and

described by multiple stochastic integrals.

Let us therefore assume that the ª noiseº added in the action±angle

variables representation (9) of un corresponds to values of an independently

scattered Gaussian stochastic measure M on the Brillouin zone, i.e., the real
and the complex parts of MN( D k) 5 M( D k) are independent Gaussian random

variables with mean 0 and variance ) D k ) /2 for each D k belonging to the Nth

division of ( 2 p /a, p /a].

Both the real and complex parts of M can be determined by a Gaussian

process {Xk}k P ( 2 p /a, p /a] with independent increments, EXk 5 0, and the correla-
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tion function E XkXk8, 5 min{k, k8}/2. We set for the real (complex) part of

M((k, k8]) the value Xk8 2 Xk, and then extend M to a countably additive

measure on all Borel subsets of ( 2 p /a, p /a] [10].
We would like to stress here that the stochastic process Xk is not parame-

trized by time t, but by the wave numbers k. In order to avoid such confusion

we prefer to speak about a stochastic measure instead of a stochastic process.

It follows from the above considerations that the random phase assump-

tion amounts to the assumption that uÄ n 5 uÄ Nn is of the form

uÄ n 5 o
k

ei(kna 1 v kt) 1 Jk

v k 2
1/2

M( D k) (8)

[for the rest of this section we confine ourselves to the displacement uÄ n of

the form (5), since the general case (58) can be treated in the same way].

Instead of (8) we write simply

uÄ n 5 o
k

fN(k)M( D k) (9)

It follows from the theory of stochastic integrals (see, for example, ref. 11)

that there exists a mean-square limit of (9) as N ® ` if and only if the

sequence { fN} converges in L2
( 2 p /a, p /a], i.e., if there exists a function f on

( 2 p /a, p /a] such that

lim
N #

p /a

2 p /a

) fN(k) 2 f (k) ) 2 dk 5 0

In such a case f is stochastically integrable and we put

# f (k)M(dk) 5 l.i.m.
N o

k
fN(k)M( D k)

where l.i.m.N denotes the limit, as N ® ` , in the norm | ? | 5 (E ) ? ) 2)1/2.

Moreover we have

E Z # f (k)M(dk) Z
2

5 # ) f (k) ) 2 dk

In order to apply these facts to our specific model, recall that numbers

k form, as N ® ` , a dense subset of ( 2 p /a, p /a]. It is enough to assume

that, for example, the ratios Jk / v k can be extended to a continuous and

integrable function J(k)/ v (k). In such a case we obtain the following formula
for the mean-square limit of uÄ n 5 uÄ Nn and its averages:

l.i.m.
N

uÄ n 5 # ei(kna 1 v (k)t) 1 J(k)

v (k) 2
1/2

M(dk) (10)

and
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lim
N

^ ) uÄ n ) 2 & 5 lim
N

E ) uÄ n ) 2 5 # J(k)

v (k)
dk 5 lim

N

1

N o
k

Jk

v k

(11)

Equation (10) together with (11) gives a rigorous meaning to the conversion

formula of vector-wave sums to integrals [see ref. 6, (2.10)] in the mean-

square averages.

Assuming random phases at the initial time and, consequently, that uÄ n
is of the form (8), we see that the time evolution t ® uÄ n(t) becomes a

stationary stochastic process with the correlation function

^ uÄ n(t 1 s)uÄ n(t) & 5 # ei v (k)s J(k)

v (k)
dk

Another consequence of the random phase assumption is that we can
give a rigorous meaning to the statement that in the limit N ® ` the ª weightedº

Kronecker delta N d kr
kk8 becomes the Dirac delta d (k 2 k8). To see this, let us

note that for each N, there is one-to-one correspondence between the wave

numbers k and the intervals D k. Moreover, the Kronecker delta can be

expressed as

d kr
kk8 5 E M( D k)M( D k)

Indeed, for k Þ k8, M( D k) and M( D 8k) are independent random variables with

mean zero, thus N d kr
kk8 5 0. For k 5 k8, d kr

kk8 5 E ) M( D k) ) 2 5 ) D k ) 5 1/N.

Therefore

N d kr
kk8 5 H 0 for k Þ k8

1 for k 5 k8

To check the convergence N d kr
kk8 ® d (k 2 k8), let us fix k P ( 2 p /a, p /a] and

extend d kr
kk8 on all k8 putting N d kr

kk8 5 1 if k8 P D k and 0 otherwise, where D k

is now the interval which contains k. Thus if w is a continuous function, then

# w (k8)N d kr
kk8 dk8 5

1

) D k ) # D k

w (k8) dk8 ® w (k) 5 # w (k8) d (k 2 k8) dk8

as N ® ` .

Finally, let us discuss briefly a possibility of the assumption that the

angle coordinates a k are random variables [6]. If we simply replace a k 5
a k(t) by random variables u k 5 u k(t), then the corresponding random measure
M 5 M t also depends on t. However, our previous considerations concerning

determination of the measure M were time independent. Therefore M t( D )

must have for each t a normal distribution with mean zero and variance ) D ) .
This implies that, for example, the distribution of
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uÄ n 5 uÄ n(t) 5 l.i.m.
N o

k
eikna 1 Jk

v k 2
1/2

M( D k) 5 # eikna 1 Jk

v k 2
1/2

M t(dk) (12)

does not depend on t either. Note that the assumption a k(t) 5 u k(t) is equivalent

to a k(t) 5 v kt 1 u k(t), which means that phases are random at all times. We

have therefore reached the same conclusion as quoted above [2], that the

assumption of random phases at all times implies that the system is in

equilibrium.

3. STOCHASTIC REPRESENTATION OF INTERACTIONS

Having presented the above idea of introducing random phases to the

action±angle variables, we may now consider interactions unun8, unun8un9,

. . . , or, in general, any interactions between two or more particles in the

thermodynamic limit, in particular, anharmonic lattices with the potential
energy U of the form [7]

U 2 U0 5
1

2 o
n,n8

An,n8unun8 1
1

6 o
n,n8,n9

Bn,n8,n9unun8un9 (13)

[compare with (1)].
In the case of interacting particles there appears an additional phenome-

non which is not present on the level of one particle and which can not be

treated rigorously in the traditional ª Hilbert space approachº Ð the appearance

of ª diagonal singularitiesº [2±6].

We would like now to present very briefly this, perhaps most important

consequence of the introduction of random phases. We shall show the appear-
ance of diagonal singularities in the thermodynamic limit on the case of two

interacting particles. Although this case may seem to be oversimplified, it

exhibits all the main features of interactions. Physically more interesting,

but technically more complicated, interactions of many particles such as in

anharmonic lattices can be treated in the same manner. More rigorous treat-

ment of this problem will be presented elsewhere.
The basic tool which allows the study of interactions in the thermody-

namic limit is the multiple stochastic integral, which has its origin in the

pioneering work of Wiener on ª polynomial chaosº [12]. Although there is

a vast literature devoted to this subject, the multiple stochastic integral is

usually defined for functions which equal zero on diagonals. Such an approach

allows one to simplify the theory of the integrals, but is not adequate for our
purposes. It turns out that diagonals of integrands play a crucial role in

problems connected with irreversibility. For this reason we base our further

considerations on refs. 13 and 14, which concern only double stochastic

integrals, but in the most general form.
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Let us therefore consider as an example the states SN which can be

expressed in terms of displacements of un as

SN 5 o
n,n8

Cn,n8unun8 (14)

Introducing action±angle coordinates and assuming further that v 2 k 5 v k

and J 2 k 5 Jk , we can transform (14) into

SN 5
1

N o
k,k8, « 1, « 2 1 JkJk8

v k v k8 2
1/2

Vkk8e
i( e 1 a k 1 e 2 a k8) (15)

where Vkk8 5 ( n,n8 Cn,n8e
i(kn 1 k8n8)a. The summation in (15) is over all k, k8 and

over all signs e 1, e 2 5 6 .

Similar considerations as those which led to formulation (9) lead us

now to the expression

SN 5 o
k,k8, e 1, e 2

gN(k, k8)M e 1( D k)M e 2( D 8k) (16)

where M+ 5 M, M 2 5 M, and gN is a step function defined on the square

( 2 p /a, p /a] 3 ( 2 p /a, p /a], which equals (Jk Jk8/ v k v k8)
1/2Vkk8e

i( e 1 v k 1 e 2 v k8)t on

D k 3 D k8.
Once more the question of existence and representation of the state SN

in the limit N ® ` amounts to the existence of the limit of (16) and its

representation. The answer is not, however, a straightforward generalization

of the previous case. The existence of the L2 limit g(k, k8) of gN(k, k8) as

N ® ` is a necessary but, in general, not sufficient condition for the existence

of l.i.m.N SN. In addition, the function gN(k, k8) must be L1-convergent on
the diagonal k 5 k8 [13]. If this is the case, the double stochastic integral of

g(k, k8) exists and

S ` 5 oe 1 e 2 # # g(k, k8)M e 1(dk)M e 2(dk8) 5 l.i.m.
n

SN (17)

Therefore we can define the state S in the thermodynamic limit, putting S 5
S ` , if and only if the interactions Vkk8 can be extended to a function V(k, k8)
defined on the square ( 2 p /a, p /a] 3 ( 2 p /a, p /a] which satisfies

# # JkJk8

v k v k8
) V(k, k8) ) 2 dk dk8 1 # Jk

v k
) V(k, k) ) dk , `

Since our stochastic measure is Gaussian, we can derive from ref. 13 a

more explicit representation of S 5 S ` . For example, that component of (17)

which corresponds to e 1 5 1 and e 2 5 2 is of the form
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# Jk

v k
V(k, k) dk 1 # # 1 JkJk8

v k v k8 2
1/2

V0(k, k8)ei( v k 2 v k8)tM(dk)M(dk8) (18)

where V0(k, k8) 5 V(k, k8) for k Þ k8, and V0(k, k) 5 0. The second component

of (19) can be also regarded as a stochastic integral with respect to a stochastic

measure which assumes 0 on the diagonal.
The above example indicates that it is possible to describe the class of

all states involving interactions of two particles. Namely such a state can be

identified with a stochastically integrable function g(k, k8) and represented

as a stochastic integral. The time evolution of interactions is, however, more

complicated than the states considered in the previous section. For example,

the stochastic process corresponding to one component of unun8, which is
represented in the thermodynamic limit by

# # ei[(kn 1 k8n8) 1 ( v k 2 v k8)t] 1 J(k)J(k8)

v (k) v (k8) 2
1/2

M(dk)M(dk8)

is not stationary.

4. INTERACTIONS AND DIAGONAL SINGULARITIES

We now connect the states introduced above, which are random variables,

with states understood in the traditional wayÐ as densities or operators. In

order to avoid heavy notation let us consider a real Gaussian stochastic

measure M and a state S associated with a real function g

S 5 # # g(k, k8)M(dk)M(dk8) (19)

The state (19) is correctly defined if and only if g is square-integrable as a

function of two variables and integrable on the diagonal. We can therefore

associate with g an operator on L2
[ 2 p /2, p /2] of the form

A 5 Ad 1 And (20)

The operator Ad is a multiplication operator

Ad w (k) 5 g(k, k) w (k)

and And is a kernel operator

And w (k) 5 # g(k, k8) w (k8) dk8

Operators of the form (20) are called states, or operators, with diagonal
singularity [2±5]. They belong to the dual of the Banach algebra of observ-



Atomic Vibrations in the Thermodynamic Limit 2577

ables with diagonal singularity characterized in ref. 4. It follows from the

above remarks that each state corresponding to interactions determines an

operator with diagonal singularity.
The converse is also true if we restrict ourself to operators (20) where

Ad is an operator of multiplication by an integrable function a(k) and And is

a Hilbert Schmidt operator. In such a case we can define the corresponding

state S through (19) taking as g(k, k8) the kernel of the operator And modified

in such a way that g(k, k) 5 a(k).

The equivalence established above allows us to connect operators with
diagonal singularity with probability densities commonly used in statistical

mechanics. Notice first that an operator with diagonal singularity determines,

via (19), the random variable S, which in turn determines the probability

density. In order to find this density it is enough to find its characteristic

function (Fourier transform).

Consider first a characteristic function of a noninteracting state which,
like atomic displacements, can be represented in the form

# f (k)M(dk) (21)

As before, assume that f and M are real. Then its characteristic function is

Eei j * f (k)M(dk) 5 e 2 1/2 j 2 * f2(k) dk

This means that the density function corresponding to state (21) is Gaussian
with mean zero and variance * f 2(k) dk. However, the characteristic function

of state (19)

f ( j ) 5 Eei j * * g(k,k8)M(dk)M(dk8) (22)

and consequently its density, is no longer Gaussian. To see this it is enough

to put g(k, k8) 5 a(k)a(k8), where * a2(k) dk 5 1. Then

# # g(k, k8)M(dk)M(dk8) 5 F # a(k)M(dk)G 2

(23)

and the characteristic function of (23) is

f ( j ) 5
1

(1 2 2i j )1/2

As a straightforward generalization of above case let us consider the function

g(k, k8) 5 o
`

n 5 1
l nan(k)an(k8) (24)

where * an(k)an8(k) dk 5 d nn8, and l n $ 0, ( n l n , ` . Then
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# # g(k, k8)M(dk)M(dk8) 5 o
n

l n F # an(k)M(dk)G 2

Since an(k) are pairwise orthogonal, so are their stochastic integrals,

Xn 5 # an(k)M(dk)

Since Xn are Gaussian random variables, they are mutually independent.

Consequently X 2
n are also independent. Thus the characteristic function of

the corresponding state (19) is of the form

Eei j * * g(k,k8)M(dk)M(dk8) 5 &
`

n 5 1
Ee l n j X2

n 5 &
`

n 5 1

1

(1 2 2i j l n)
1/2 (25)

Observe that the right-hand side of (25) is nothing but the Fredholm determi-
nant associated with the kernel (24).

The above formula which relates the characteristic functions of some

interacting states with Fredholm determinants can be applied directly to

operators with diagonal singularity. For example, it is enough to assume that

And is a nonnegative tracial operator and take as l n its eigenvalues arranged
in a nonincreasing order (including multiplicities). If * a(k) dk 5 Tr(And ),

where a(k) is the multiplier of Ad, then the characteristic function of the

corresponding state (19) is also of the form (25). To see this it is enough to

apply Mercer’ s theorem [15].

Applying the above technique, we can also find distributions of un(t)
and unun8(t). In order to do this it is enough to split (10) [resp. (18)] into real
and complex parts and calculate the corresponding characteristic functions.

We shall not discuss in this article the Liouville space description of

lattices such as presented in ref. 6, which pointed out the necessity to go

beyond the traditional Hilbert space structure. It follows from (18) that even

to describe admissible interaction functions V for two particles we cannot

confine ourselves to the ª naturalº Hilbert space of square-integrable functions.
Generally, considering states which involve interactions of s distin-

guished atoms n1, . . . , ns , we obtain expressions of the form

# . . . # V(k1, . . . , ks)M1(dk1) . . . Ms(ks) (26)

where V(k1, . . . , ks) is a function of s variables, and M j 5 M or M. The
necessary and sufficient conditions of the existence of such integrals also

involve integrability of V on diagonals.

The stochastic approach presented in this paper concerns systems where

the noise is of short range and affects only closest neighbors. We may also
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consider long-range noise, but in such a case the central limit theorem cannot

be applied to the scaling N 2 1/2. Another scaling, like N 2 1/p, 0 , p , 2, would

lead to stable LeÂvy stochastic measures and processes.
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